Study of simulated annealing based algorithms for multiobjective optimization of a constrained problem

نویسنده

  • Balram Suman
چکیده

In this paper, four simulated annealing based multiobjective algorithms—SMOSA, UMOSA, PSA and WMOSA have been used to solve multiobjective optimization of constrained problems with varying degree of complexity along with a new PDMOSA algorithm. PDMOSA algorithm uses a strategy of Pareto dominant based fitness in the acceptance criteria of simulated annealing and is improved. In all algorithms, the current solution explores its neighborhoods in a way similar to that of classical simulated annealing. The performance and computational cost for all algorithms have been studied. All algorithms are found to be quite robust with algorithmic parameters and are capable of generating a large number of well diversified Pareto-optimal solutions. The quality and diversification of Pareto-optimal solutions generated by all algorithms are found to be problem specific. The computational cost is least by WMOSA and is followed by PDMOSA. The algorithms are simple to formulate and require reasonable computational time. Hence, the simultaneous use of all algorithms is suggested to obtain a wider spectrum of efficient solutions. © 2004 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding the Shortest Hamiltonian Path for Iranian Cities Using Hybrid Simulated Annealing and Ant Colony Optimization Algorithms

  The traveling salesman problem is a well-known and important combinatorial optimization problem. The goal of this problem is to find the shortest Hamiltonian path that visits each city in a given list exactly once and then returns to the starting city. In this paper, for the first time, the shortest Hamiltonian path is achieved for 1071 Iranian cities. For solving this large-scale problem, tw...

متن کامل

Multiobjective Simulated Annealing: A Comparative Study to Evolutionary Algorithms

As multiobjective optimization problems have many solutions, evolutionary algorithms have been widely used for complex multiobjective problems instead of simulated annealing. However, simulated annealing also has favorable characteristics in the multimodal search. We developed several simulated annealing schemes for the multiobjective optimization based on this fact. Simulated annealing and evo...

متن کامل

Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems

Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...

متن کامل

Improving the Performance of Trajectory-based Multiobjective Optimisers by Using Relaxed Dominance

Several recent proposed techniques for multiobjective optimisation use the dominance relation to establish preference among solutions. In this paper, the Pareto archived evolutionary strategy and a population-based annealing algorithm are applied to test instances of a highly constrained combinatorial optimisation problem: academic space allocation. It is shown that the performance of both algo...

متن کامل

Pareto-based Cost Simulated Annealing for Multiobjective Optimization

In this paper, a multiobjective simulated annealing (MOSA) method is introduced and discussed with the multiobjective evolutionary algorithms (MOEAs). Though the simulated annealing is a very powerful search algorithm and has shown good results in various singleobjective optimization fields, it has been seldom used for the multiobjective optimization because it conventionally uses only one sear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Chemical Engineering

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2004